
Collaborative Dialogue in Minecraft

Anjali Narayan-Chen∗ Prashant Jayannavar∗
University of Illinois at Urbana-Champaign

{nrynchn2, paj3, juliahmr}@illinois.edu

Julia Hockenmaier

Abstract

We wish to develop interactive agents that can
communicate with humans to collaboratively
solve tasks in grounded scenarios. Since com-
puter games allow us to simulate such tasks
without the need for physical robots, we de-
fine a Minecraft-based collaborative building
task in which one player (A, the Architect) is
shown a target structure and needs to instruct
the other player (B, the Builder) to build this
structure. Both players interact via a chat inter-
face. A can observe B but cannot place blocks.
We present the Minecraft Dialogue Corpus, a
collection of 509 conversations and game logs.
As a first step towards our goal of developing
fully interactive agents for this task, we con-
sider the subtask of Architect utterance gener-
ation, and show how challenging it is.

1 Introduction

Building interactive agents that can successfully
communicate with humans about the physical
world around them to collaboratively solve tasks
in this environment is a long-sought goal of
AI (e.g. Winograd, 1971). Such situated dialogue
poses challenges that go beyond what is required
for the slot-value filling tasks performed by stan-
dard dialogue systems (e.g. Kim et al., 2016, 2017;
Budzianowski et al., 2018) or chatbots (e.g. Ritter
et al., 2010; Schrading et al., 2015; Lowe et al.,
2015), as well as for so-called visual dialogue
where users talk about a static image (Das et al.,
2017) or video-context dialogue where users inter-
act in a chat room while viewing a live-streamed
video (Pasunuru and Bansal, 2018). It requires the
ability to refer to real-world objects and spatial re-
lations that depend on the current position of the
speakers as well as changes in the environment.
Due to the expense of actual human-robot commu-
nication (e.g. Tellex et al., 2011; Thomason et al.,
∗Both authors equally contributed to the paper.

2015; Misra et al., 2016; Chai et al., 2018), simu-
lated environments that allow easier experimenta-
tion are commonly used (Koller et al., 2010; Chen
and Mooney, 2011; Janarthanam et al., 2012).

In this paper, we therefore introduce the
Minecraft Collaborative Building Task, in which
pairs of users control avatars in the Minecraft
virtual environment and collaboratively build 3D
structures in a Blocks World-like scenario while
communicating solely via text chat (Section 3).
We have built a data collection platform and have
used it to collect the Minecraft Dialogue Cor-
pus, consisting of 509 human-human written di-
alogues, screenshots and complete game logs for
this task (Section 4). While our ultimate goal is
to develop fully interactive agents that can collab-
orate with humans successfully on this task, we
first consider the subtask of Architect utterance
generation (Section 5) and describe a set of base-
line models that encode both the dialogue history
(Section 6) and the world state (Section 7). Sec-
tion 8 describes our experiments. Our analysis
(Section 9) highlights the challenges of this task.
The corpus and platform as well as our models are
available for download. 1

2 Related Work

Our work is partly inspired by the HCRC Map
Task Corpus (Anderson et al., 1991), which con-
sists of route-following dialogues between an In-
struction Giver and a Follower who are given maps
of an environment that differ in significant details.
Our task also features asymmetric roles and lev-
els of information between the two speakers, but
operates in 3D space and focuses on the creation
of structures rather than navigation around exist-
ing ones. Koller et al. (2010) design a challenge
where systems with access to symbolic world rep-

1
http://juliahmr.cs.illinois.edu/Minecraft

http://juliahmr.cs.illinois.edu/Minecraft

resentations and a route planner generate real-time
instructions to guide users through a treasure hunt
in a virtual 3D world.

There is a resurgence of interest in Blocks
World-like scenarios. Wang et al. (2017) let users
define 3D voxel structures via a highly program-
matic natural language. The interface learns to
understand descriptions of increasing complex-
ity, but does not engage in a back-and-forth di-
alogue with the user. Most closely related to
our work are the corpora of Bisk et al. (2018,
2016a,b), which feature pairs of scenes involving
simulated, uniquely labeled, 3D blocks annotated
with single-shot instructions aimed at guiding an
(imaginary) partner on how to transform an input
scene into the target. In their scenario, the build-
ing area is always viewed from a fixed bird’s-eye
perspective. Simpler versions of the data retain
the grid-based assumption over blocks, and struc-
tures consist solely of numeric digits procedurally
reconstructed along the horizontal plane. Later
versions increase the task complexity significantly
by incorporating human-generated, truly 3D struc-
tures and removed the grid assumption, as well as
allowing for rotations of individual blocks. Their
blocks behave like physical blocks, disallowing
structures with floating blocks that are prevalent
in our data. Our work differs considerably in a
few other aspects: our corpus features two-way
dialogue between an instructor and a real human
partner; it also includes a wide range of perspec-
tives as a result of using Minecraft avatars, rather
than a fixed bird’s-eye perspective; and we utilize
blocks of different colors, allowing for entire sub-
structures to be identified (e.g., “the red pillar”).

3 Minecraft Collaborative Building Task

Minecraft (https://minecraft.net/) is a
popular multi-player game in which players
control avatars to navigate in a 3D world and
manipulate inherently block-like materials in
order to build structures. Players can freely move,
jump and fly, and they can choose between first-
or third-person perspectives. Camera angles can
be smoothly rotated by moving around or turning
one’s avatar’s head up, down, and side-to-side,
resulting in a wide range of possible viewpoints.

Blocks World in Minecraft Minecraft provides
an ideal setting to simulate Blocks World, al-
though there are two key differences to physical

toy blocks: Minecraft blocks can only be placed
on a discrete 3D grid, and they do not need to obey
gravity. That is, they do not need to be placed on
the ground or on top of another block, but can be
put anywhere as long as one of their sides touches
another block. That neighboring block can later
be removed, allowing the second block (and any
structure supported by it) to “float”. Players need
to identify when such supporting blocks need to
be added or removed.

Collaborative Building Task We define the
Collaborative Building Task as a two-player game
between an Architect (A) and a Builder (B). A is
given a target structure (Target) and has to instruct
B via a text chat interface to build a copy of Target
on a given build region. A and B can communicate
back and forth via chat throughout the game (e.g.
to resolve confusions or to correct B’s mistakes).
B is given access to an inventory of 120 blocks of
six given colors that it can place and remove. A
can observe B and move around in its world, al-
lowing it to provide instructions from varying per-
spectives. But A cannot move blocks, and remains
invisible to B. The task is complete when the struc-
ture built by B (Built) matches Target, invariant to
translations within the horizontal plane and rota-
tions about the vertical axis. Built also needs to
lie completely within the boundaries of the prede-
fined build region.

Although human players were able to complete
each structure successfully, this task is not triv-
ial. Figure 1 shows the perspectives seen by each
player in the Minecraft client. This example from
our corpus shows some of the challenges of this
task. A often provides instructions that they think
are sufficient, but leave B still clearly confused,
indicated either by B’s lack of initiative to start
building or a confused response. Once a multi-
step instruction is understood, B also needs to plan
a sequence of steps to follow that instruction; in
many cases, B chooses clearly suboptimal solu-
tions, resulting in large amounts of redundancy
in block movements. A misinterpreted instruction
may also lead to a whole sequence of blocks being
misplaced by B (either due to miscommunication,
or because B made an educated guess on how to
proceed) until A decides to intervene (in the ex-
ample, this can be seen with the built yellow 6). A
could also misinterpret the target structure, giving
B incorrect instructions that would later need to be
rectified. This illustrates the challenges involved

https://minecraft.net/

Figure 1: In the Minecraft Collaborative Building Task, the Architect (A) has to instruct a Builder (B) to build a
target structure. A can observe B, but remains invisible to B. Both players communicate via a chat interface. (NB:
We show B’s actions in the dialogue as a visual aid to the reader.)

in designing an interactive agent for this task: the
Architect needs to provide clear instructions; the
Builder needs to identify when more information
is required, and both agents may need to design
efficient plans to construct complex structures.

4 The Minecraft Dialogue Corpus

The Minecraft Dialogue Corpus consists of 509
human-human dialogues and game logs for the
Collaborative Building Task. This section de-
scribes this corpus and our data collection process.
Further details are in the supplementary materials.

4.1 Data Collection Procedure

Data was collected over the course of 3 weeks (ap-
prox. 62 hours overall). 40 volunteers, both under-
graduate and graduate students with varying levels
of proficiency with Minecraft, participated in 1.5
hour sessions in which they were paired up and
asked to build various predefined structures within
a 11 × 11 × 9 sized build region. Builders be-
gan with an inventory of 6 colors of blocks and 20
blocks of each color. After a brief warm-up round
to become familiar with the interface, participants
were asked to successfully build as many struc-
tures as they could manage within this time frame.
On average, each game took 8.55 minutes.

Architects were encouraged not to overwhelm
the Builder with instructions and to allow their
partner a chance to respond or act before moving
on. Builders were instructed not to place blocks
outside the specified build region and to stay as
faithful as possible to the Architect’s instructions.
Both players were asked to communicate as natu-
rally as possible while avoiding idle chit-chat.

Participants were allowed to complete multiple
sessions if desired; we ensured that an individual
never saw the same target structure twice, and at-
tempted as much as possible to pair them with a
previously unseen partner. While some individu-
als indicated a preference towards either the Ar-
chitect or Builder roles, roles were, for the most
part, assigned in such a way that each individual
who participated in repeat sessions played both
roles equally often. Each participant is assigned
a unique anonymous ID across sessions.

4.2 Data Structures and Collection Platform
Microsoft’s Project Malmo (Johnson et al., 2016)
is an AI research platform that provides an API
for Minecraft agents and the ability to log, save,
and load game states. We have extended Malmo
into a data collection platform. We represent the
progression of each game (involving the construc-
tion of a single target structure by an Architect and

Builder pair) as a discrete sequence of game states.
Although Malmo continuously monitors the game,
we selectively discretize this data by only saving
snapshots, or “observations,” of the game state at
certain triggering moments (whenever B picks up
or puts down a block or when either player sends
a chat message). This allows us to reduce the
amount of (redundant) data to be logged while pre-
serving significant game state changes. Each ob-
servation is a JSON object that contains the fol-
lowing information: 1) a time stamp, 2) the chat
history up until that point in time, 3) B’s posi-
tion (a tuple of real-valued x, y, z coordinates as
well as pitch and yaw angles, representing the
orientation of their camera), 4) B’s block inven-
tory, 5) the locations of the blocks in the build
region, 6) screenshots taken from A’s and B’s
perspectives. Whenever B manipulates a block,
we also capture screenshots from four invisible
“Fixed Viewer” clients hovering around the build
region at fixed angles.

4.3 Data Statistics and Analysis

Overall statistics The Minecraft Dialogue Cor-
pus contains 509 human-human dialogues (15,926
utterances, 113,116 tokens) and game logs for 150
target structures of varying complexity (min. 6
blocks, max. 68 blocks, avg. 23.5 blocks). We
collected a minimum of three dialogues per struc-
ture. The training, test and development sets con-
sist of 85 structures (281 dialogues), 39 structures
(137 dialogues), and 29 structures (101 dialogues)
respectively. Dialogues for the same structure are
fully contained within a single split; structures in
training are thus guaranteed to be unseen in test.

On average, dialogues contain 30.7 utterances:
22.5 Architect utterances (avg. length 7.9 tokens),
8.2 Builder utterances (avg. length 2.9 tokens),
and 49.5 Builder block movements. Dialogue
length varies greatly with the complexity of the
target structure (not just the number of blocks, but
whether it requires floating blocks or contains rec-
ognizable substructures).

Floating blocks Blocks in Minecraft can be
placed anywhere as long as they touch an existing
block (or the ground). If such a supporting block is
later removed, the remaining block (and any struc-
ture supported by it) will continue to “float” in
place. This makes it possible to produce complex
designs. 53.6% of our target structures contain
such floating blocks. Instructions for these struc-

tures varied greatly, ranging from step-by-step in-
structions involving temporary supporting blocks
to single-shot descriptions such as, simply, “build
a floating yellow block” (sufficient for a veteran
Minecraft player, but not necessarily for a novice).

Referring expressions and ellipsis Architects
made frequent use of implicit arguments and ref-
erences, relying heavily on the Builder’s current
perspective and their most recent actions for ref-
erence resolution. For instance, Architect instruc-
tions could include references such as “two more
in the same direction,” “one up,” “two towards
you,” and “one right from the last thing you built.”

Recognizable shapes and sub-structures
Some target structures were designed with com-
monplace objects in mind. Some Architects took
advantage of this in their instructions, ranging
from straightforward (‘L’-shapes, “staircases”) to
more eccentric descriptions (“either a chicken or a
gun turret,” “a heart that looks diseased,” “a silly
multicolored worm”). To avoid slogging through
block-by-block instructions, Architects frequently
used such names to refer to sub-elements of the
target structure. Some even defined new terms
that get re-used across utterances: A: i will refer
to this shape as r-windows from here on out... B:
okay A: please place the first green block in the
right open space of the blue r-window.

Builder utterances Even though the Architect
shouldered the large responsibility of describing
the unseen structure, the Builder played an active
role in continuing and clarifying the dialogue, es-
pecially for more complex structures. Builders
regularly took initiative during the course of a dia-
logue in a variety of ways, including verification
questions (“is this ok?”), clarification questions
(“is it flat?” or “did I clean it up correctly?”),
status updates (“i’m out of red blocks”), sugges-
tions (“feel free to give more than one direction at
a time if you’re comfortable,” “i’ll stay in a fixed
position so it’s easier to give me directions with
respect to what i’m looking at”), or extrapolation
(“I think I know what you want. Let me try,” then
continuing to build without explicit instruction).

5 Architect Utterance Generation Task

Although the Minecraft Dialogue Corpus was mo-
tivated by our ultimate goal of building agents that
can successfully play an entire collaborative build-
ing game as Architect or Builder, we first con-

Figure 2: An overview of the full model combining
global and local world representation variants.

sider the task of Architect utterance generation:
given access to the entire game state context lead-
ing up to a certain point in a human-human game
at which the human Architect spoke next, we aim
to generate a suitable Architect utterance.

Architect utterance generation is a much sim-
pler task than developing a fully interactive Ar-
chitect or Builder, but it still captures some of the
essential difficulties of the Architect’s role. Since
Architects need to be able to give instructions, cor-
rect Builders’ mistakes and answer their questions,
they need the ability to compare the built structure
against the target structure, and to understand the
preceding dialogue. We also believe that the mod-
els developed for this task could be leveraged to at
least bootstrap a fully interactive Architect (which
will also need to decide when to speak, as well as
deal with potentially much noisier dialogue histo-
ries than those we are considering here).

Although future work should consider the task
of Builder utterance generation, the challenges in
creating a fully interactive Builder lie more in the
need to understand and execute complex instruc-
tions in a discourse and game context, to know
when it is appropriate to ask clarification questions
and to understand the Architect’s answers, than in
the need to generate complex utterances.

6 Seq2Seq Architect Utterance Model

We define a sequence of models for Architect
utterance generation. Our most basic variant is
a sequence-to-sequence model (Sutskever et al.,
2014) that conditions the next utterance on the pre-

Figure 3: A target structure (left) and corresponding
built structure at a certain point in the game (right).

ceding dialogue. Since Architects need to com-
pare the current state of the build region against
the target structure, we augment this model in the
next section with world state information.

Dialogue History Encoder We encode the en-
tire dialogue history as a sequence of tokens
in which each player’s utterances are contained
within speaker-specific start and end tokens
(<A>... or). Each
utterance corresponds to a single chat message,
and may consist of multiple sentences. These
tokens are fed through a word embedding layer
and subsequently passed through a bidirectional
RNN (Schuster and Paliwal, 1997) to produce an
embedding of the entire dialogue history in the en-
coder RNN’s final hidden state.

Output Utterance Decoder The output utter-
ance is generated by a decoder RNN conditioned
on the discourse context. In standard fashion, the
final hidden state of the encoder RNN is used to
initialize the hidden state of the decoder RNN.

7 World State Representations

To be able to give accurate instructions, the Ar-
chitect requires a mental model of how the tar-
get structure can be constructed successfully given
the current state of the built structure. Since the
Builder’s world is not explicitly aligned to the
target structure (our space does not contain any
markers that would indicate cardinal directions or
other landmarks, and we consider any built struc-
ture a success as long as it matches the target
structure and fits completely into the Builder’s
build region), this model must consider all possi-
ble translational and rotational alignment variants,
although we assume it can ignore any sub-optimal
alignments. For any given alignment, we compute

the Hamming distance between the built structure
and the target (the total number of blocks of each
color to be placed and removed), and only retain
those alignments that have the smallest distance
to the target. Once the game has progressed suf-
ficiently far, there is often only one optimal align-
ment between built and target structures, but in the
early stages, a number of different optimal align-
ments may be possible. Our world state represen-
tation captures this uncertainty.

Figure 3 depicts a target structure (left) and a
point in the game at which a single red block has
been placed (right). We can identify three poten-
tial paths (left, up, and down) to continue the struc-
ture by extending it along the four cardinal direc-
tions. A permissibility check disqualifies the op-
tion of extending to the right, as blocks would end
up placed outside the build region. These remain-
ing paths, considered equally likely, indicate the
colors and locations of blocks to be placed (or re-
moved). A summary of this information forms the
basis of the input to our model.

Computing the distance between structures
Computing the Hamming distance between the
built and target structure under a given alignment
tells us also which blocks need to be placed or re-
moved. A structure S is a set of blocks (c, x, y, z).
Each block has a color c and occupies a location
(x, y, z) in absolute coordinate space (i.e., the co-
ordinate system defined by the Minecraft client).
A structure’s position and orientation can be mu-
tated by an alignment A in which S undergoes a
translation AT (shift) followed by a rotation AR,
denoted A(S) = AR(AT (S)). We only consider
rotations about the vertical axis in 90-degree inter-
vals, but allow all possible translations along the
horizontal plane. The symmetric difference be-
tween the target T and a built structure S w.r.t. an
alignment A, diff(T, S,A), consists of the set of
blocks to be placed, Bp = A(T) − S and the set
of blocks to be removed from S, Br = S −A(T).

diff(T, S,A) = Bp ∪Br

The cardinality |diff(T, S,A)| is the Hamming
distance between A(T) and S.

Feasible next placements Architects’ instruc-
tions often concern the immediate next blocks to
be placed. Since new blocks can only be feasi-
bly placed if one of their faces touches the ground
or another block, we also wish to capture which

blocks Bn can be placed in the immediate next ac-
tion. Bn, the set of blocks that can be feasibly
placed, is a subset of Bp.

Block counters To obtain a summary represen-
tation of the optimal alignments (without detailed
spatial information), we represent each of the sets
Bp and Br (as well as Bn) of an alignment A =
Bp ∪ Br as sets of counters over block colors (in-
dicating how many blocks of each color remain to
be placed [next] and to be removed). We compute
the set of expected block counters for each color
c ∈ {red,blue,orange, purple, yellow, green} and
action a ∈ {p, r, n} as the average over all k opti-
mal alignments A∗ = argminA(|diff(T, S,A)|).

E[countc,a] =
1

k

k∑
i=1

countic,a

With six colors, and three sets of blocks (all place-
ments, next placements, removals), we obtain an
18-dimensional vector of expected block counts.

7.1 Block Counter Models
We augment our basic seq2seq model with two
variants of block counters that capture the current
state of the built structure:

Global block counters are 18-dimensional vec-
tors (capturing expected overall placements, next
placements, and removals for each of the six col-
ors) that are computed over the whole build region.

Local block counters Since many Builder ac-
tions involve locations immediately adjacent to
their last action, we construct local block coun-
ters that focus on and encode spatial information
of this concentrated region. Here, we consider
a 3 × 3 × 3 cube of block locations: those di-
rectly surrounding the location of the last Builder
action as well as the last action itself. We com-
pute a separate set of block counters for each of
these 27 locations. Using the Builder’s position
and gaze, we deterministically assign a relative
direction for each location that indicates its posi-
tion relative to the last action in the Builder’s per-
spective, e.g., “left”, “top”, “back-right,” etc. The
27 18-dimensional block counters of each location
are concatenated, using a fixed canonical ordering
of the assigned directions.

Adding block counters to the model To add
block counters to out models, we found the best re-
sults by feeding the concatenated global and local

counter vectors through a single fully-connected
layer before concatenating them to the word em-
bedding vector that is fed into the decoder at each
time step (Figure 2).

8 Experimental Setup

Data Our training, test and dev splits contain
6,548, 2,855, and 2,251 Architect utterances.

Training We trained for a maximum of 40
epochs using the Adam optimizer (Kingma and
Ba, 2015). During training, we minimize the
sum of the cross entropy losses between each pre-
dicted and ground truth token. We stop training
early when perplexity on the held-out validation
set had increased monotonically for two epochs.
All word embeddings were initialized with pre-
trained GloVe vectors (Pennington et al., 2014).
We first performed grid search over model archi-
tecture hyperparameters (embedding layer sizes
and RNN layer depths). Once the best-performing
architecture was found, we then varied dropout pa-
rameters (Srivastava et al., 2014). More details can
be found in the supplementary materials.

Decoding We use beam search decoding to
generate the utterance with the maximum log-
likelihood score according to our model normal-
ized by utterance length (beam size = 10). In or-
der to promote diversity of generated utterances,
we use a γ penalty (Li et al., 2016) of γ = 0.8.
These parameters were found by a grid search on
the validation set for our best model.

9 Results and Analysis

We evaluate our models in three ways: we use au-
tomated metrics to assess how closely the gener-
ated utterances match the human utterances. For
a random sample of 100 utterances per model, we
use human evaluators to identify dialogue acts and
to evaluate whether the generated utterances are
correct in the given game context. Finally, we per-
form a qualitative analysis of our best model.

9.1 Automated Evaluation

Metrics To evaluate how closely the generated
utterances resemble the human utterances, we re-
port standard BLEU scores (Papineni et al., 2002).
We also compute (modified) precision and recall
of a number of lists of domain-specific keywords
that are instrumental to task success: colors, spa-
tial relations, and other words that are highly in-

dicative of dialogue acts (e.g., responding “yes”
vs. “no”, instructing to “place” vs. “remove”,
etc.). These lists also capture synonyms that are
common in our data (e.g. “yes”/“yeah”), and
were obtained by curating non-overlapping lists
of words (with a frequency ≥ 10 across all data
splits) that are appropriate to each category.2

We report precision and recall scores per cate-
gory, and for an “all keywords” list consisting of
the union of all category word lists. For each cat-
egory, we reduce both human and generated utter-
ances to those tokens that occur in the correspond-
ing keyword list: “place another red left of the
green” reduces to “red green” for color, to “left”
for spatial relations and “place” for dialogue.

For a given (reduced) generated sentence Sg
and its associated (reduced) human utterance Sh ,
we calculate term-specific precision (and recall) as
follows. Any token tg in Sg matches a token th in
Sh if tg and th are identical or synonyms. Similar
to BLEU’s modified unigram precision, once tg is
matched to one token th, it cannot be used for fur-
ther matches to other tokens within Sh . Counts are
accumulated over the entire corpus to compute the
ratio of matched to total tokens in Sg (or Sh).

Ablation study Table 1 shows the results of an
ablation study on the validation set. All model
variants here share the same RNN parameters.
While the individual addition of global and local
block counters each see a slight boost in perfor-
mance in precision and recall respectively, com-
bining them as in our final model shows significant
performance increase, especially on colors.

Test set results We finetune our most basic and
most complex model via a grid search over all ar-
chitectural parameters and dropout values on the
validation set. The best model’s results on the test
set are shown in Table 2. Our full model shows no-
ticeable improvements on each of our metrics over
the baseline. Most promising is again the signifi-
cant increase in performance on colors, indicating
that the block counters capture necessary informa-
tion about next Builder actions.

9.2 Human Evaluation

In order to better evaluate the quality of generated
utterances as well as benchmark human perfor-
mance, we performed a small-scale human eval-
uation of Architect utterances. We asked 3 hu-
2 These word lists are in the supplementary materials.

BLEU Precision / Recall
Metric B-1 B-2 B-3 B-4 all keywords colors spatial dialogue

seq2seq 14.9 6.9 3.8 2.1 12.0 / 10.3 8.4 / 12.1 9.9 / 9.1 16.5 / 19.1
+ global only 16.1 7.7 4.1 2.4 12.9 / 11.6 14.4 / 15.5 8.8 / 7.0 19.1 / 18.8
+ local only 16.0 7.9 4.5 2.6 13.5 / 13.8 13.3 / 23.5 9.5 / 11.3 19.3 / 22.0
+ global & local 16.2 8.1 4.7 2.8 14.5 / 13.8 14.8 / 23.3 10.7 / 9.5 17.9 / 20.6

Table 1: BLEU score and term-specific precision and recall ablation study on the validation set.

BLEU Precision / Recall
Metric B-1 B-2 B-3 B-4 all keywords colors spatial dialogue

seq2seq 15.3 7.8 4.5 2.8 11.8 / 11.1 8.1 / 17.0 9.3 / 8.6 17.9 / 19.3
+ global & local 15.7 8.1 4.8 2.9 13.5 / 14.4 14.9 / 28.7 8.7 / 8.7 18.5 / 19.9

Table 2: BLEU and term-specific precision and recall scores of the seq2seq and the full model on the test set.

man participants who had previously completed
the Minecraft Collaborative Building Task to eval-
uate 100 randomly sampled scenarios from the test
set. Each scenario was reenacted from an actual
human-human game by simulating the context of
dialogue and Builder actions in Minecraft. Then,
we presented 3 candidate Architect utterances to
follow that context (one each generated from the
models in Table 2 as well as the original human
utterance) to the evaluators in randomized order.

Here, we analyze a subset of results on coarse
annotation of dialogue acts and utterance correct-
ness. More details on the full evaluation frame-
work, including descriptions of evaluation crite-
ria and inter-annotator agreement statistics, are in-
cluded in the supplementary materials.

Dialogue acts Given a list of six predefined
coarse-grained dialogue acts (including Instruct B,
Describe Target, etc.; see the supplementary ma-
terial for full details), evaluators were asked to
choose all dialogue acts that categorized a candi-
date utterance. An utterance could belong to any
number of categories; e.g., “great! now place a
red block” is both a confirmation as well as an in-
struction. Results can be found in Table 3. These
results show a significantly higher diversity of ut-
terance types generated by humans. Humans pro-
vided instructions only about half of the time, and
devoted more energy to providing higher-level de-
scriptions of the target, responding to the Builder’s
actions and queries, and rectifying mistakes. On
the other hand, even the improved model failed to
capture this, mainly generating instructions even if
it was inappropriate or unhelpful to do so.

Utterance correctness Given a window of
game context (consisting of at least the last seven
Builder’s and Architect’s actions, but always in-
cluding the previous Architect’s utterance) and ac-
cess to the target structure to be built, evaluators
were asked to rate the correctness of an utterance
immediately following that context with respect
to task completion. For an utterance to be fully
correct, information contained within it must both
be consistent with the current state of the world
as well as not lead the Builder off-course from
the target. Utterances could be considered par-
tially correct if some described elements (e.g. col-
ors) were accurate, but other incorrect elements
precluded full correctness. Otherwise, utterances
could be deemed incorrect (if wildly off-course) or
N/A (if there was not enough information). Results
can be found in Table 4. Unsurprisingly, with-
out access to world state information, the baseline
model performs poorly, conveying incorrect infor-
mation about half of the time. With access to a
simple world representation, our full model shows
marked improvement on generating both fully and
partially correct utterances. Finally, human per-
formance sets a high bar; when not engaging in
chitchat or correcting typos, humans consistently
produce fully correct utterances constructive to-
wards task completion.

9.3 Qualitative Analysis
Here, we use examples to illustrate different as-
pects of our best model’s utterances.

Identifying the game state In the course of a
game, players progress through different states. In
the human-human data, dialogue is peppered with
context cues (greetings, questions, apologies, in-

Describe Answer Confirm B’s Correct/
Model Instruct B Target question actions/plans clarify A/B Other

seq2seq 76.0 12.0 7.0 9.0 3.0 4.0
+ global & local 72.0 14.0 8.0 9.0 3.0 4.0
human 47.0 14.0 12.0 17.0 23.0 8.0

Table 3: Percentage of utterances categorized as a given dialogue act. Labels were determined per dialogue act by
majority vote across three human evaluators. An utterance can belong to multiple dialogue acts.

Model Full Partial None N/A

seq2seq 14.0 28.0 48.0 10.0
+ global & local 25.0 36.0 32.0 7.0
human 89.0 2.0 0.0 9.0

Table 4: Percentage of utterances deemed correct by
human evaluators.

structions to move or place blocks) that indicate
the flow of a game. Our model is able to capture
some of these aspects. It often begins games with
an instruction like “we’ll start with blue”, and
may end them with “ok we’re done!” (although
it occasionally continues with further instructions,
e.g “great! now we’ll do the same thing on the
other side”.) It often says “perfect!” immediately
followed by a new instruction which indicates the
model’s ability to acknowledge a Builder’s previ-
ous actions before continuing. The model often
describes the type of the next required action cor-
rectly (even if it makes mistakes in the specifics of
that action): it generated “remove the bottom row”
when the ground truth was “okay so now get rid of
the inner most layer of purple in the square”.

Predicting block colors and spatial relations
Generated utterances often identify the correct
color of blocks, e.g “then place a red block on
top of that” in a context when the the next place-
ments include a layer of red blocks (ground truth
utterance: “the second level of the structure con-
sists wholly of red blocks. start by putting a red
block on each orange block”.) Less frequently,
the model is also able to predict accurate spatial
relations (“perfect! now place a red block to the
left of that”) for referent blocks.

Utterance diversity and repetition Generated
utterances lack diversity: the pattern “a x b” (for
a rectangle of size a × b) is almost exclusively
used to describe squares (an extremely common
shape in our data). Utterances are mostly fluent,
but sometimes contain repeats: “okay, on top of

the blue block, put a blue block on top of the blue”
or “yes, now, purple, purple, purple, ...”

10 Conclusion and Future Work

The Minecraft Collaborative Building Task pro-
vides interesting challenges for interactive agents:
they must understand and generate spatially-aware
dialogue, execute instructions, identify and re-
cover from mistakes. As a first step towards the
goal of developing fully interactive agents for this
task, we considered the subtask of Architect utter-
ance generation. To give accurate, high-level in-
structions, Architects need to align the Builder’s
world state to the target structure and identify
complex substructures. We show that models
that capture some world state information improve
over naive baselines. Richer models (e.g. CNNs
over world states, attention mechanisms (Bah-
danau et al., 2015), memory networks (Bordes
et al., 2017)) and/or explicit semantic representa-
tions should be able to generate better utterances.
Clearly, much work remains to be done to create
actual agents that can play either role interactively
against a human. The Minecraft Dialogue Corpus
as well as the Malmo platform and our extension
of it enable many such future directions. Our plat-
form can also be extended to support fully inter-
active scenarios that may involve a human player,
measure task completion, or support other training
regimes (e.g. reinforcement learning).

Acknowledgements

We would like to thank the reviewers for their
valuable comments. This work was supported
by Contract W911NF-15-1-0461 with the US
Defense Advanced Research Projects Agency
(DARPA) Communicating with Computers Pro-
gram and the Army Research Office (ARO). Ap-
proved for Public Release, Distribution Unlimited.
The views expressed are those of the authors and
do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

References
Anne H Anderson, Miles Bader, Ellen Gurman Bard,

Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister,
Jim Miller, et al. 1991. The HCRC map task corpus.
Language and speech, 34(4):351–366.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Yonatan Bisk, Daniel Marcu, and William Wong.
2016a. Towards a dataset for human computer com-
munication via grounded language acquisition. In
AAAI Workshop: Symbiotic Cognitive Systems.

Yonatan Bisk, Kevin Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning interpretable spatial oper-
ations in a rich 3D Blocks World. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, pages 5028–5036.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016b.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761, San Diego, California. Association
for Computational Linguistics.

Antoine Bordes, Y.-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Joyce Y. Chai, Qiaozi Gao, Lanbo She, Shaohua Yang,
Sari Saba-Sadiya, and Guangyue Xu. 2018. Lan-
guage to action: Towards interactive task learn-
ing with physical agents. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-18), pages 2–9. Inter-
national Joint Conferences on Artificial Intelligence
Organization.

David Chen and Raymond Mooney. 2011. Learning
to interpret natural language navigation instructions
from observations. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence,
pages 859–865.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M.F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual Dialog. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 326–
335.

Srinivasan Janarthanam, Oliver Lemon, and Xingkun
Liu. 2012. A web-based evaluation framework for
spatial instruction-giving systems. In Proceedings
of the ACL 2012 System Demonstrations, pages 49–
54, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Matthew Johnson, Katja Hofmann, Tim Hutton, and
David Bignell. 2016. The Malmo platform for artifi-
cial intelligence experimentation. In Proceedings of
the Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI-16), pages 4246–4247.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E
Banchs, Jason D Williams, and Matthew Henderson.
2017. The fourth dialog state tracking challenge.
In Dialogues with Social Robots, pages 435–449.
Springer.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E
Banchs, Jason D Williams, Matthew Henderson, and
Koichiro Yoshino. 2016. The fifth dialog state track-
ing challenge. In 2016 IEEE Spoken Language
Technology Workshop (SLT), pages 511–517.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alexander Koller, Kristina Striegnitz, Donna Byron,
Justine Cassell, Robert Dale, Johanna Moore, and
Jon Oberlander. 2010. The first challenge on gen-
erating instructions in virtual environments. In
Empirical Methods in Natural Language Genera-
tion, pages 328–352, Berlin, Heidelberg. Springer-
Verlag.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint arXiv:1611.08562.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The Ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 285–294, Prague, Czech Re-
public. Association for Computational Linguistics.

Dipendra K. Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2016. Tell me Dave: Context-
sensitive grounding of natural language to manip-
ulation instructions. The International Journal of
Robotics Research, 35(1-3):281–300.

https://journals.sagepub.com/doi/pdf/10.1177/002383099103400404
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://doi.org/10.18653/v1/N16-1089
https://openreview.net/forum?id=S1Bb3D5gg
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/1
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
http://openaccess.thecvf.com/content_cvpr_2017/papers/Das_Visual_Dialog_CVPR_2017_paper.pdf
https://www.aclweb.org/anthology/P12-3009
https://www.aclweb.org/anthology/P12-3009
https://pdfs.semanticscholar.org/a6c7/836a1877abb13c56d0ec29e9cde0d6e60cf8.pdf
https://pdfs.semanticscholar.org/a6c7/836a1877abb13c56d0ec29e9cde0d6e60cf8.pdf
https://doi.org/10.1109/SLT.2016.7846311
https://doi.org/10.1109/SLT.2016.7846311
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=1880370.1880391
http://dl.acm.org/citation.cfm?id=1880370.1880391
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.1177/0278364915602060
https://doi.org/10.1177/0278364915602060
https://doi.org/10.1177/0278364915602060

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ramakanth Pasunuru and Mohit Bansal. 2018. Game-
based video-context dialogue. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 125–136, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532–1543, Doha, Qatar. Associ-
ation for Computational Linguistics.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of Twitter conversations. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
172–180, Los Angeles, California. Association for
Computational Linguistics.

Nicolas Schrading, Cecilia Ovesdotter Alm, Ray
Ptucha, and Christopher Homan. 2015. An analy-
sis of domestic abuse discourse on Reddit. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2577–
2583, Lisbon, Portugal. Association for Computa-
tional Linguistics.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew Walter, Ashis Banerjee, Seth Teller, and
Nicholas Roy. 2011. Understanding natural lan-
guage commands for robotic navigation and mobile
manipulation. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, pages
1507–1514.

Jesse Thomason, Shiqi Zhang, Raymond J Mooney,
and Peter Stone. 2015. Learning to interpret nat-
ural language commands through human-robot di-
alog. In Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI 2015), pages 1923–1929.

Sida I. Wang, Samuel Ginn, Percy Liang, and Christo-
pher D. Manning. 2017. Naturalizing a program-
ming language via interactive learning. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 929–938, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Terry Winograd. 1971. Procedures as a representa-
tion for data in a computer program for understand-
ing natural language. Technical report, MIT. Cent.
Space Res.

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/D18-1012
https://www.aclweb.org/anthology/D18-1012
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/N10-1020
https://www.aclweb.org/anthology/N10-1020
https://doi.org/10.18653/v1/D15-1309
https://doi.org/10.18653/v1/D15-1309
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf

